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The relationship between the behaviour of a composite system and the boundary 
conditions imposed by the external energetic circuit from a laboratory reference system 
is established. The thermally activated character of the transformation processes 
visualized in the measuring systems is expressed topologically by superposition of the 
time and temperature dependences (of Arrhenius type) for the component which is 
found in transformation relative to the laboratory system. The temporal relativistic 
principle is extended to the thermally driven processes by using this superposition 
condition. The kinetic equations for three particular cases of purely dissipative 
coupling are deduced in this way: in the case when the two fluxes associated with the 
component are of opposite directions; the shift equation for the relaxation periods 
in amorphous morphology; and for the case of capacitive dependence as boundary 
condition. 

The study of transformation processes in non-equilibrium systems by using 
topological models has recently led to the qualitative and quantitative explanation 
of  some experimental results and might possibly help to outline certain working 
principles in topological thermodynamics [1 - 3]. The reexamination of numerous 
experimental results (some of them unexplained by classical non-equilibrium 
thermodynamics) in the light of this new theory will establish these pIinciples. 
So far topological thermodynamics has been characterized by the following ideas: 

(i) Non-equilibrium systems have a composite nature. In this way the capacitive 
elements were defined as topological components for thermally [1, 2] and viscous 
[3] driven processes. 

(ii) A transformation process in a non-equilibrium system is topologically ex- 
pressed by the time-dependence of the flux and potential variables. This principle 
of exclusive time-dependence seems to remove the spatial dependence for the mass 
and energy transport phenomena associated with the transformation process. 
This classical aspect is replaced by the time-dependence of a response function 
which characterizes the system behaviour to an external perturbation. 

The two principles have been used to describe the transformation processes in 
systems with dissipative coupling between components [1, 2], and to define the 
inductive element by its temporal relativistic effect [3]. The internal energetic 
circuit, and the external one which imposes the boundary condition of the perturba- 
tion, are described topologically by constitutive equations. In this paper the system 
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behaviour to external perturbation is explained by separation of the boundary- 
condition in the response function proper for the measuring system which consist~ 
of the two circuits. The temporal relativistic principle is thus extended to explain 
the transformation processes in systems with dissipative coupling in which the 
accumulation fluxes are of opposite directions. 

To explain the transformation processes, at least the thermally driven ones, a 
condition is imposed on the relaxation time associated with the transforming 
component, i.e. it must be of Arrhenius type. This condition of a thermally activat- 
ed process is experienced practically for all energetic modes, which leads one to- 
consider the time-temperature superposition as a new principle in topological 
thermodynamics. On tile basis of this principle, two other important results for 
the case of purely dissipative coupling are found again, namely the temperature 
shift equation of the relaxation times for amorphous morphology, and the kinetic: 
equation for the capacitive dependent experiment as boundary condition. 

Boundary condition in the measuring systems 

Internal and external energetic circuits in the measuring systems 

We consider the internal circuit for a composite system with capacitive compo- 
nents C1 and C 2 coupled by the dissipative element R1 (Fig. 1). The constitutive 
equations for thermal and viscous modes coincide [1, 3], so that we may express~ 
the energetic circuits by the general flux u(t) and potential U(t) variables. 

The coupling manner of this internal circuit to an external one establishes the 
behaviour of all the system to the boundary condition imposed by the external: 

t 
Fig. 1. The bond diagram of the internal circuit for two components coupled purely dissipative: 
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Fig. 2. Bond diagrams for single measuring system (a) and differential measuring system (b); 
respectively 

J. Thermal Anal. 15, 1979 



D R ~ G A N :  ON THE BOUNDARY CONDITIONS 299" 

circuit. Let us consider the cases for which the behaviour of this system experienced 
by a response function (associated with a measurable value) is proportional to the 
external perturbation which defines the boundary condition. These systems will be 
called measuring systems. The differential thermal analyses were previously [1 ]. 
defined as measuring systems on account of the linearity condition between the 
response function O(t) and the internal transforming flux w(t). 

In Fig. 2 are represented two cases of dissipative coupling of the internal circuit 
to the external boundary condition U(t), frequently used in thermal analyses, de- 
fined as a single measuring system (SMS) and differential measuring system (DMS), 
respectively. For these systems the following response functions are measured: 

SMS: Ul(t) or 0(t) = U(t) - Ul(O 

DMS: Oa(t ) =fUR( t ) -  Ul(t). (1} 

To express the relationship between these response functions and the boundary 
condition, we will take into account the constitutive equations and the scaling 
expressions of the following type [1 - 3]: 

02 = 01/(1 + p~) (2), 

where the upper sign denotes the Laplace transform, p = co + i6 is a complex 
variable with reciprocal time dimensions, and ~2 = RiC2 is the relaxation time 
associated with the process of accumulation of the flux u2 and dissipated through 
R1 [1]. 

Taking into account these facts, we may generally write 

0 = ~ /?  (3) 

where 0 is the general response function associated with the considered measuring 
system, and H the distribution function of the relaxation times proper to this 
system. For the three above-mentioned measuring systems, function H becomes 
explained as in Table 1, where 

z = R(C~ + C2/(1 + pzz))  = 1~C~ = "q + "r~J(1 -t-p'c~) (4), 

K = C2/C~, ~ = RC~, ~R = ~CR,  ~ = ~ C ~ .  5) 

The measuring systems which directly measure the Laplace component of the 
response function will be called resonance systems. In these systems function H- 
represents exactly the response function corresponding to a delta perturbation 
U(t) = Uot(t) [4]. Equation (3) may be interpreted as a separation of the boundary 
condition in the response function 0(p)from a function/?which represents an in- 
trinsic characteristic of the measuring system. 

Finally, we may assume that the internal flux u is accumulated by an equivalent 
topologic element denoted Zi after the following constitutive equation 

t7 = ( I /Z ' -00 .  (6). 
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Table 1 
Associated functions to the three consi 

Measuring system 
Response function 

O Distribution function, H 

SMS 

D M S  

1 
U~ / 1/(1+ p z) 

U--U t ! p ~/(1+ pr) 

U1-- Ua Kp "t'R/(1 Jr- PVtO(1 + pZR) 

On the other hand, this flux u is dissipated in the measuring system through an 
equivalent dissipative element Ze, so that 

O = 2e~ (7) 

which defines the impedance of the measuring system. Taking into account Eqs 
(3), (6) and (7), we obtain a general relationship 

2e = Jq2i (8) 

available for all measuring systems (see Table 1). 
As an immediate consequence of these relations, we may observe that the internal 

circuit of the considered system (Fig. 1) accumulates the flux u through the im- 
pedance R in the SMS systems. For a linear system we may assmne that the flux 

Ze Z2o 

Y T | | 
U=U~ +b 2 Uz 

a) b) 

Fig. 3. The equivalent bond diagram of the measuring system corresponding to the total flux 
u (a), and the partial one uz (b), respectively 

u consists of the contributions u 1 and u 2, corresponding to two branches of trans- 
formations of the internal circuit, so that 

u = u l + u . , .  (9) 

The measuring system may be represented aschematically taking into account 
the constitutive Eqs (6) and (7) as in Fig. 3a. If  the response function 0 (as general 
notation) measures directly the partial flux u2, these equations become: 

z72 = (1/2~.00 (6-) 

0 = 22eSz = (z'zjzzi)O = / 7 2 0  (7.) 

J. Thermal Anal. 15, 1979 



D R ~ . G A N :  O N  T H E  B O U N D A R Y  C O N D I T I O N S  301 

dered measuring systems (see the text) 

Internal  circuit  In ternal  circuit  
u ~ Ul--U2 u2 = u - - u  1 

~ ~ 
R/H 

A/( f i -  ft .)  

A 

A/(1 - ~ . / ~ )  

~/(fi-~I1) 

f~/ri 

fi](1-H1/fi) 

ft 

and the measuring system is represented as in Fig. 3b. 
Let us consider as an example a SMS system relative to flux uz associated with 

component Ca: 

1. 0 = U 1 

The starting point is the relation 

0 - O1 = ~(~1 + ~ )  (10) 

where 

~1 = pCi(I1 = (pC~/(1 + pZl))U. (11) 

Taking into account (3) and (11), Eq. (10) becomes: 

0 = ~ - (p~i/(1 + p q ) ) O  - ~ = / 7 0  
so that 

Z2i = R / ( / ~ -  /~) (12) 
where 

/ t i  = 1/(1 + pzl) (13) 

represents the distribution function of the measuring system in the absence of the 
transforming branch corresponding to flux u~. 

2 . 0 = U - U I  

Taking into account (3) and (11), Eq. (10) gives in this case: 

= (pzl/(1 + p'~l)))O -b Rt~z = / t U  (14) 
where 

/~1 = P'Cl/(1 q- PZi) (15) 

has a similar definition as in the above case. Relation (12) is found again. 
A similar result is obtained for a DMS system relative to the total flux u = 

= u i + u 2. In this case the distribution function is modified by a partial function 

tTg = pzR/(1 + pzg) (16) 
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which corresponds to the above definition adopted for the reference branch in 
the bond diagram (Fig. 2b.) 

As a general rule we may write 

21,2,,i = 2~,i/(1 - /72a / /7 ) .  (17) 

Taking into account Eqs. (6) and (7), we obtain: 

1/21. = (ltZll.) + (1/221,.) (18) 
and 

/7 = /71  + / t 2 .  (19) 

The signs of/ /1,  H 2 in Eqs (17) and (19), and of Zn# and Z2i,~ in Eq. (18) corre- 
spond to the signs of the fluxes u 1 and u2, respectively, in relation (9). 

The reversal property of a time-boundary condition in measuring systems 

Let us consider a measuring system with two internal branches corresponding 
to the partiel fluxes u 1 > 0 and us < 0, respectively. If  we choose the sign of ul 
as a reference, we may write for the partial measuring system that 

2~i  -+ - 22 i  ( 2 0 )  

relative to U, 0 and ul. On the other hand, this system (Fig. 3b) exclusively mea- 
sures the flux u2, so that 

uz > 0.  (21) 

Taking into account (20) and (21), another condition results: 

-+ - U. (22) 

Conditions (20) and (22) simultaneously exist in this local measuring system cor- 
responding to the flux uz and define a local reference system (LocRS). A similar 
situation results for the case when Ul > 0, and u2 > 0, and also choosing the ul 
sign as a reference. This property of simultaneous changing in sign of the boundary 
condition U and internal accumulative element Z2i in LocRS relative to the chang- 
ing in sign of the partial flux u2 in the total measuring system (denoted as the 
laboratory reference system - LabRS) will be called the reversal property of the 
time-boundary condition. If  the local element is purely capacitive, so that 

~----~,2i = 1/(pC~) (23) 

this property becomes directly: 

LabRS (ul '  -u2,  U, t) ~ LocRS (uz, - U, - t ) .  (24) 

Let us take as an example the kinetic equation previously deduced for DMS 
calorimetric system (Fig. 2b) in thermal mode and verified for the crystallization 
process of polyethylene [2]: 

In (trot) = -E/(&T) + k (25) 
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where t m is the time period associated with the maximum flux u2, T is the tem- 
perature of transformation, E is the activation energy of the process in the branch, 

is the gas constant, and k is a scaling constant. This system measures directly 
the transformation flux u2, which is of the same sign as ul in the SMS system (Fig. 
2a) for this process. If we now consider a process with u2 of opposite sign relative 
to ul, according to the reversal property (24) the kinetic equation (25) becomes 

In ( t r J )  = +E/(g{T) + k. (26) 

This equation was verified for the process of thermal curing in an epoxy resin- 
curing agent system in which u2 is exothermal and u 1 endothermal, respectively [5]. 
The temperature domain of validity for Eq. (26) 

T ~ E/ag (27) 

is the same as for Eq. (25). A classical kinetic model, applied to these curing pro- 
cesses in epoxy-composite systems and verified on a scanning calorimetric system 
[6], involves the same condition as (27), but these models [7] give the value of the 
activation energy as twice that resulting from the topologic model [5]. This fact 
may be explained in that in the topologic model only one component is considered 
in transformation, which would correspond in the classical kinetic model to the 
resulting activation energy divided by the reaction order [6]. On the other hand, 
the reversal property may be written as a consequence of the connection between 
E, T and t according to Arrhenius conditions or kinetic equations (25) and (26): 

LabRS (T, t: - E )  --+ LocRS ( -T ,  - t :  E). (24') 

Time-temperature superposition principle 

The topologic kinetic model proposed [2] for thermally driven transformation 
processes in purely dissipative coupled composites uses the condition 

~2 = R1Cz = z2oe -e/let (28) 

where ~20 is the value of z2 for T + 0 K. Condition (28) is experienced practically 
for transformation processes occurring in all energetic modes, so that it may be- 
come a general principle in topological thermodynamics. Two representative 
experimental results are explained topologically below by using condition (28) as 
the time-temperature superposition principle. 

Amorphous morphology 

An amorphous material behaves as a composite system with purely dissipative 
coupling between two components, and two aspects may be distinguished: the 
behaviour of a quenched morphology and annealed morphology, respectively [8]. 
In thermal measuring system, a SMS for example, these two behaviours are rep- 
resented as in Figs 4a and 4b, respectively. Quenched behaviour is released in 
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an amorphous system by its quenching (rapid cooling) from a high temperature 
(T > To) to a low temperature (T < To) so that an immediate calorimetric scan 
in the SMS system reveals a pure stepwise change in the capacitive element of the 
internal circuit for a temperature To (Fig. 4a) [9]. This fact may be interpreted by 
the appearance of a new capacitive element, the local temperature scale of which 
is shifted relative to the "inert" component by value T o . The two components are 
considered purely dissipative coupled, and condition (28) becomes in this case 

�9 2 = ~20 e-;Z/R(r--r~ (29) 

relative to LabRS. 
If a quenched morphology is annealed before the calorimetric scan, an endo- 

thermal effect will be revealed (Fig. 4b) in addition to the capacitive changing [9]. 
At present, this phenomenon is explained by the relaxation process of the enthalpy, 
but many recent results lead to the conclusion that an order-disorder transforma- 
tion process occurs. Topologically, this fact may be supported by a separation 
process during annealing via a viscous mode. The behaviour of this annealed 
morphology in amorphous systems will be the subject of a future study, because 
the viscous mode implies the inductive elements [3]. 

Let us consider again the relaxation time corresponding to the SMS system and 
defined by Eq. (4), and determined under experimental conditions of resonance. 
We propose to calculate the ratio 

a T = R e z ( T ) / R e z ( T o )  (30) 

known as the shift factor for relaxation time for a temperature T relative to T O 
in the isothermal measurements on the amorphous system. Equation (30) will 
become 

a T = (1/(C1 + Cz))(C1 + C2(1 + co~2)/((1 + coz2) 2 + 52% 2) (31) 

taking into account Eq. (4) and the fact that p = o9 + i6. 

:I 
t o )  I 

Tg T.j 

Cp; 

<9 

/ /  

b) I 
Tg T. t 

Fig. 4. The response function in a thermal analysis for the quenched amorphous morphology 
(a) and annealed amorphous morphology (b), respectively 
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We further refer to the amorphous systems with E _~ 40 + 100 kcal/mole 
(determined according to the classical consideration of the hole theory) and 
T o ~_ 300 + 400 K [9], so that 

~ 1. (32) 

In this approximation Eq. (31) becomes 

In aT = A / ( T -  To) + B (33) 
where 

A = E/~,  B = In (co%). (34) 

Taking into account the above considerations, it is important to note that the 
shift equation (33) may be experienced in isothermal measurements in the reso- 
nance systems in any energetic mode, and is similar to the phenomenological 
Williams- Landel-  Ferry equation [10]: 

In aT = - A ' ( T  -- To)/((T - T~) + B') .  (35) 

Comparing Eqs (33) and (35), we have 

T o = T  o + e ,  A ' =  - B ,  e = B ' =  +A/B.  (36) 

The capacitive dependence as boundary condition 

The general condition (28) suggests that we may correlate the behaviour of the 
internal circuit of the system under isothermal conditions and considering variable 
Cz towards a saturation value for which the transformation flux becomes zero in 
the external circuit. In this measuring system (similar to that in Fig. 3b) the 
associated kinetic equation becomes (taking into account condition (28)): 

In Ca = - A 1 / T  + A2 (37) 
where 

A1 = +E/g~, A2 = In Re(v2o/Ra). (38) 

This equation has been established experimentally under very accurate condi- 
tions for a series of studies on solubility in the saturation of a large number of 
organic and inorganic compounds in inert liquids [11 ]. 
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R~SUMfi -- On a 6tabli le rappor t  entre le compor tement  d 'un syst6me composite et les condi- 
t ions aux limites impos6es par  le circuit d'6nergie externe au syst6me de r6f6rence du labora- 
toire. Le caract6re thermiquement  activ6 des processus de t ransformat ion visualis6s dans les 
systgmes de mesure est exprim6 topologiquement en superposant les relations d ' interd6pendan- 
ces (de type Arrhenius) temps-temp6rature du composant  qui se t ransforme vis-a-vis du 
syst6me laboratoire.  Le principe relativiste temporaire  est 6tendu aux processus thermique- 
merit command6s en se servant de cette condition de superposition. Les 6quations cin6tiques 
pour  trois cas particuliers de couplage purement  dissipatifs sont 6tablies de cette fagon, ~t savoir 
dans le cas off les deux flux associ6s au composant  sont de directions oppos6es, l '6quation de 
d6placement pour  les pgriodes de relaxation pour  la morphologie amorphe ainsi que pour  le 
cas de la d6pendance capacitive en tant  que condition aux limites. 

ZUSAMMENFASSUNG -- Der Zusammenhang  zwischen dem Verhalten eines zusammen- 
gesetzten Systems und den dutch  den /iusseren Energie-Stromkreis des Laboratoriums- 
Referenzsystems bedingten peripheren Bedingungen wurde festgestellt. Der in den Megsyste- 
men sichtbar gemachte therrnisch aktivierte Charakter  der Umwandlungsvorg~inge wird 
topologisch ffir die Komponente ,  welche sich in der zum Labor-Referenzsystem geh6renden 
Umwandlung  befindet, durch l~lberlagerung der Zeit- und Temperaturabhfingigkeit  (vom 
Arrhenius-Typ) ausgedrfickt. Das tempor~ire Relativit/itsprinzip wird auf  thermisch gesteuerte 
Prozesse durch Einsatz dieser l~lberlagerungs-Bedingungen erweitert. Die kinetischen Gleichun- 
gen ffir drei besondere Ffille der rein dissipativen Schaltung werden auf  diese Weise abgeleitet, 
.d.h. ffir den Fall  wo die beiden der Komponente  zugeordneten StrSmungen yon entgegen- 
gesetzter Richtung sind, die Verschiebungsgleichung ffir die Relaxationsperioden in der 
amorphen  Morphologie  vorliegt und  ffir den Fall der kapazitiven Abh/ingigkeit als peripherer 
Bedingung. 

Pe3roMe - -  YcTaHOBJieHa B3aIIMOCBIt3B Me~C,/Iy noBe)ieHaeM cno~Ho~ CnCTeMbI I4 rpanH~itt,iMrl 
yCJIOBI, DtM],I, ~IaKJm~IbmaeMbtMa BnyTpeHHHM aHepreTn'~eclc~M tinrJ~oM ~3 ~a60paTop~o~ cTan- 
/IapTaofl CncTeMbI. TepMw~ecI~HX aKT~iBapoBanm,t~ xapa•Tep B~i3yaYn,no npoTeKaroglero npe- 
BpameHan n n3MepneMo~ crlcTeMe Br, ipa:~aeTc~ TOnOnormIecrd~ nano~enHeM BpeMeHno~ rI 
TeMnepaTypi~o~ 3aB~IcnraocTe~ (appermycoBcKoro Trma) ~na rOMnOHerITbI, na~IenHor~ nptt npe- 
Bpaxtten~r~ OTHOCIITeJIBI-IO ~a6opaTopHo~ CI'ICTeMbI. ~TOT peJIaT~IBI, ICTCKn~ np~In~Hu, !~C~/OJIb3y~[ 
ycaoB~e HanoMeHv6~, pacrlpocTpanerI Ha TepMH~tecKI, I y npaBJIaeMI,ie npo~eccBI. WaKm~ IIyTeM 
BbiBe~enl~i Ir ypaBHeHHa ~IJ~a Tpex ~IaCTHBIX c.ay,~aeB ~J~CTO paccermaiomero COBO- 
KylIYIe131,nt, a iiMenno: ~Ji~i cayman, KorJIa JIBa IIOTOKa, cBit3anltble C KOMIIOHeHTO!~ ~[BJI~tOTC~I 
IIpOTIIBOYIOJIO)KHt,IX ~iar~paB~e~m~, Jlna c~y,ma crae~eI~n~ ypaBr~eagn ~ma penaKcaIInoI~m,IX 
nepao~oa B aMopdj}ao~ Mopqboaorna rt ~I~a cay,~art Harpyzcarome~t 3aBnCVrMOCTa raK rpann~noro  
yC~IOBI~L 
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